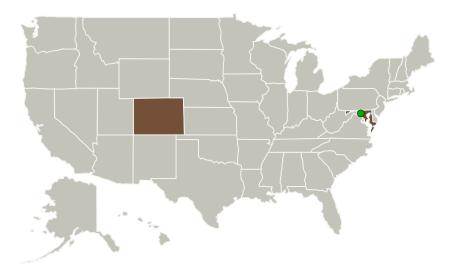
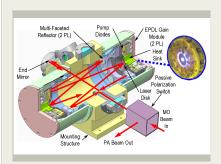
1.5-Micron Amplifier for High-Average Power, Phase I



Completed Technology Project (2016 - 2016)


Project Introduction

Aqwest proposes to develop a novel, compact and rugged high-peak power erbium (Er) laser amplifier at 1.5 m to for NASA remote sensing trasmitter. The project will take advantage our novel and highly successful edge-pumped disk laser (EPDL) multi-passed amplifier we are developing for the US Army, Navy, and the Department of Energy (DOE) applications. In Phase I, we will use our existing suite of models to determine the feasibility of a 1.5- m EPDL-based laser amplifier and identify preferred operating regimes. We will test our existing Er:glass laser disk in our existing EPDL test bed to further calibrate/anchor our models over the wavelength range of interest, especially at around 1.547 m. Using this information, we will design and fabricate a new laser disk with optimized Er doping and improved waste heat handling capability for the targeted operating regime, and test its performance under relevant conditions, and confirm the models. In Phase II, we will design, fabricate, test, and deliver a prototype 1.5- m EPDL laser amplifier.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Aqwest, LLC	Lead Organization	Industry	Larkspur, Colorado
Goddard Space Flight Center(GSFC)	Supporting Organization	NASA Center	Greenbelt, Maryland

1.5-Micron Amplifier for High-Average Power, Phase I

Table of Contents

Project Introduction	
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	
Images	2
Organizational Responsibility	
Project Management	
Technology Maturity (TRL)	2
Technology Areas	
Target Destinations	

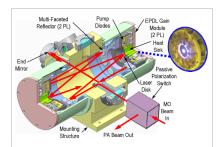
1.5-Micron Amplifier for High-Average Power, Phase I

Completed Technology Project (2016 - 2016)

Primary U.S. Work Locations	
Colorado	Maryland

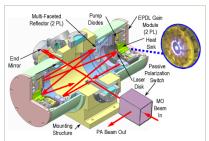
Project Transitions

June 2016: Project Start



December 2016: Closed out

Closeout Documentation:


• Final Summary Chart(https://techport.nasa.gov/file/140403)

Images

Briefing Chart Image 1.5-Micron Amplifier for High-Average Power, Phase I

(https://techport.nasa.gov/imag e/126717)

Final Summary Chart Image 1.5-Micron Amplifier for High-

Average Power, Phase I Project (https://techport.nasa.gov/imag e/126976)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Aqwest, LLC

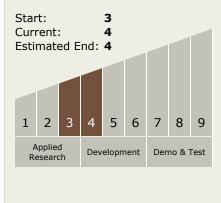
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

John Vetrovec

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

1.5-Micron Amplifier for High-Average Power, Phase I

Completed Technology Project (2016 - 2016)

Technology Areas

• TX08 Sensors and

Primary:

- Instruments

 └─ TX08.1 Remote Sensing
 Instruments/Sensors

 └─ TX08.1.5 Lasers
- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

